VAPORISATION ET DISSOCIATION THERMIQUE DES SULFURES DE PHOSPHORE P₄S₃, P₄S₇ ET P₄S₁₀ A L'ETAT GAZEUX

J. BOUIX, R. HILLEL, H. VINCENT et Y. MONTEIL

Université Claude Bernard Lyon I, Laboratoire de Physico-Chimie Minérale associé au C.N.R.S. N° 116, 43 Boulevard du 11 Novembre 1918, 69621 Villeurbanne, France

(Reçu le 25 mars 1977)

It is shown by Raman spectroscopy at high temperature and by vapor tensimetric measurements that the vaporisation of P_4S_3 is congruent, whereas P_4S_7 and P_4S_{10} dissociate at the beginning of vaporisation. P_4S_7 gives P_4S_3 and sulfur reversibly. The dissociation of P_4S_{10} into P_4S_7 and sulfur is irreversible. Above 600°, in non-saturated vapour the dissociation of P_4S_3 gives phosphorus, sulfur and some unidentified gaseous species. The heat capacity of liquid P_4S_3 has been measured. That of gaseous P_4S_3 and its standard entropy have been calculated. The vaporisation standard enthalpy of P_4S_3 has been estimated from the experimental results on the saturated vapour pressures. The standard entropy of liquid P_4S_3 and its boiling point have been derived from these data.

Les sulfures de phosphore présentent un grand intérêt industriel. Leurs propriétés sont encore loin d'être toutes connues. L'établissement du diagramme binaire phosphore-soufre nous a permis de déterminer les différents sulfures de phosphore, de préciser leur domaine d'existence et le comportement thermique des phases condensées [1].

A l'état gazeux, le comportement thermique des sulfures de phosphore est bien moins connu. Nous ne connaissons à ce sujet que les mesures densitométriques de P_4S_3 et P_4S_7 gazeux effectuées par Stock en 1908 [2], les tensions de vapeur saturante de P_4S_3 et P_4S_7 mesurées en 1965 par la méthode du point de rosée [3] et une récente étude tensimétrique portant sur le mécanisme de dissociation thermique de P_4S_3 et P_4S_{10} gazeux [4]. Ces résultats sont fragmentaires et parfois contradictoires.

Pour notre part, nous avons étudié la vaporisation et la dissociation thermique à l'état gazeux des trois sulfures de phosphore à fusion congruente: P_4S_3 , P_4S_7 et P_4S_{10} . La préparation détaillée de ces trois composés a été publiée par l'un d'entre nous [5]. Nous avons mesuré leurs tensions de vapeur saturante et non saturante à l'aide d'un manomètre de "Bourdon" [6], et identifié les espèces gazeuses par spectrométrie Raman à haute température [7].

Etude du comportement thermique des gaz

Etude de P₄S₃

Nos mesures de la tension de vapeur saturante et non saturante de P_4S_3 sont résumées sur la figure 1 par les courbes *S*, *a*, *b* et *c*. Aux points *A*, *B* et *C*, points pour lesquels la vapeur cesse d'être saturante, les masses molaires calculées du gaz sont très voisines de celle de P_4S_3 égale à 220 g. La courbe *S* correspond donc entre 173° (point de fusion de P_4S_3 [1]) et 406° (cf. tableau 4, point d'ébullition de P_4S_3) à l'équilibre de vaporisation:

Fig. 1. Tensions de vapeur de P₄S₃, a) 0.000705 g/cm³, b) 0.00115 g/cm³, c) 0.00302 g/cm³

L'analyse de la phase vapeur par spectrométrie Raman confirme ce résultat. En effet, les spectres de la vapeur saturante entre 260° (pression voisine de 30 torrs) et 400° (pression voisine de 700 torrs) présentent un ensemble invariable de pics très voisins de ceux publiés par Gardner [8], dont le plus intense, polarisé, se situe vers 446 cm⁻¹ (tableau 3). Tous ces pics se retrouvent aussi bien sur les spectres de P₄S₃ solide que sur les spectres de sa solution sulfocarbonique à la température ambiante.

Avec la vapeur non saturante, nous ne commençons à déceler des modifications du spectre Raman qu'au-dessus de 700° avec apparition des pics caractéristiques du soufre gazeux (en particulier 252, 305, et 560 cm⁻¹) dont nous

avons enregistré le spectre dans les mêmes conditions et, à une température supérieure, de façon moins nette, le pic de la vibration de valence symétrique du phosphore vers 600 cm⁻¹ [9].

La formation de soufre et de phosphore correspond à une décomposition de P_4S_3 dans la vapeur non saturante. Cette décomposition est toutefois partielle, étant donné que la raie polarisée à 446 cm⁻¹, caractéristique de P_4S_3 , reste la plus intense même à 800°. Cette observation est confirmée par nos mesures de tensions de vapeur puisque sur les courbes *a* et *b* (figure 1) ce n'est qu'aux températures supérieures à 600° que la pression cesse de varier linéairement selon la loi des gaz parfaits et que la masse moléculaire moyenne calculée devient différente de celle de P_4S_3 .

De plus, cette décomposition de P_4S_3 gazeux est réversible puisque après refroidissement, nous retrouvons le spectre de départ correspondant à P_4S_3 gazeux et les mêmes tensions de vapeur que celles mesurées au cours du chauffage. De cet ensemble de résultats, il est logique de conclure que la dissociation de P_4S_3 gazeux s'écrit:

$$P_4S_{3(g)} \rightleftharpoons \frac{4}{m} P_{m(g)} + \frac{3}{n} S_{n(g)}$$

avec m = 2, 4 et n = 2, 3, 4, 5, 6, 7, 8.

Connaissant la constante d'équilibre reliant P_4 et P_2 [10] et celles reliant le soufre gazeux entre ses divers degrés de polymérisation [11], connaissant enfin les valeurs expérimentales des tensions de vapeur non saturante entre 604 et 843° (figure 1, courbe *a* et *b*), nous avons trouvé que la constante de l'équilibre de dissociation de P_4S_3 en P_4 et S_2 suivait la relation:

$$\ln K_{(\text{atm})^{3/2}} = -\frac{31238}{T} + 23 \tag{1}$$

Ce résultat est assez proche de celui donné par d'autres auteurs [4]:

$$\ln K_{(atm)^{3/2}} = -\frac{28091}{T} + 28$$
 (2)

Nous avons calculé à partir de l'expression (1) l'enthalpie et l'entropie de dissociation de P_4S_3 gazeux pour une température moyenne de 1000 K:

$$\Delta H_{1000} = 62\ 259\ cal \cdot mol^{-1}$$
$$\Delta S_{1000} = 48\ cal \cdot mol^{-1} \cdot K^{-1}$$

Nous devons remarquer que, bien que par spectrométrie Raman nous n'ayons pu déceler que la présence de soufre et de phosphore, le mécanisme de dissociation de P_4S_3 est certainement plus complexe que ne l'indique l'équilibre écrit ci-dessus. En effet, si nous calculons l'enthalpie et l'entropie

à 1000K pour le seul équilibre
$$P_4S_{3(g)} \rightleftharpoons P_{4(g)} + \frac{3}{2}S_{2(g)}$$

en utilisant les données des tables thermodynamiques [10] ainsi que nos propres évaluations (voir tableau 1), nous trouvons

$$\Delta H_{1000} = 94 \,412 \text{ cal} \cdot \text{mol}^{-1}$$
$$\Delta S_{1000} = 49.69 \text{ cal} \cdot \text{mol}^{-1} \text{ K}^{-1}$$

La différence importante portant sur la valeur du ΔH_{1000} s'explique vraisemblablement par le fait que P_4S_3 gazeux se dissocie en donnant, outre les diverses espèces de phosphore et de soufre gazeux, un ou plusieurs composés gazeux contenant les deux éléments à l'état combiné.

Etude de P₄S₇

Les seuls travaux concernant la vaporisation de P_4S_7 sont dus à Gardner [8], qui conclut que P_4S_7 est toujours partiellement dissocié en P_4S_3 et P_4S_{10} .

Sur les courbes de la figure 2, nous avons représenté nos valeurs des tensions de vapeur saturante et non saturante de P_4S_7 . Nous avons constaté qu'aux points A (485°, 375.5 torrs) et B (495°, 550.6 torrs), les masses molaires calculées sont égales respectivement à 297 et 272 g. Ces valeurs sont très différentes de la masse molaire de P_4S_7 qui est de 348 g.

En raison de l'insolubilité de P_4S_7 , nous n'avons pu comparer le spectre Raman du gaz qu'à celui du solide. Dès 450°, le spectre de la vapeur saturante de P_4S_7

Fig. 2. Tensions de vapeur de P_4S_7 . a) 0.00263 g/cm³, b) 0.00313 g/cm³

présente une raie à 560 cm⁻¹ indiquant la présence de soufre dans la vapeur, et par là un début de décomposition de P_4S_7 . Le spectre Raman contient également une raie polarisée vers 446 cm⁻¹. Cette raie est présente dans le spectre de P_4S_7 solide, mais elle est intense dans celui de P_4S_3 gazeux. Aussi, à cette température, est-il difficile de l'attribuer à P_4S_3 plutôt qu'à P_4S_7 gazeux. A plus haute température, l'intensité de cette raie à 446 cm⁻¹ augmente nettement par rapport à celle des autres pics du spectre de P_4S_3 . Simultanément apparaissent toutes les raies caractéristiques du soufre.

En vapeur non saturante, P_4S_7 se décompose donc avec formation de P_4S_3 et de S gazeux. Cette décomposition est réversible par refroidissement. Pour confirmer cette réversibilité, nous avons vérifié que l'action du soufre sur P_4S_3 , à 450° fournissait bien du P_4S_7 gazeux.

En tenant compte de ces résultats et de la limite de détection des gaz par spectrométrie Raman, nous estimons que dès le début de sa vaporisation, vers 300° (figure 2), P₄S₇ se dissocie suivant l'équilibre

$$P_4 S_{7(g)} \neq P_4 S_{3(g)} + \frac{4}{m} S_{m(g)}$$

Nous avons calculé la constante de cet équilibre pour m = 2 en utilisant nos mesures de pressions pour des températures inférieures à 600°. Au-dessus, il faudrait en effet faire intervenir la dissociation de P_4S_3 gazeux sur laquelle pèsent quelques incertitudes.

Nous trouvons: entre 400 et 600°

$$\ln K (atm^2) = -\frac{11405 \pm 679}{T} + 9.0 \pm 0.8$$

ce qui donne pour une température moyenne de 500°:

et
$$\Delta H_{770} = 22665 \text{ cal} \cdot \text{mole}^{-1}$$

et $\Delta S_{770} = 17.9 \text{ cal} \cdot \text{mole}^{-1} \cdot \text{K}^{-1}$

Ces résultats n'ont pu être confirmés par un calcul thermodynamique direct pour lequel nous aurions eu besoin des capacités calorifiques et des entropies de formation de P_4S_7 gazeux et par conséquent d'un spectre moléculaire de P_4S_7 suffisamment précis pour tenter d'en faire une attribution des vibrations.

Etude de P₄S₁₀

La dissociation de P_4S_{10} a fait l'objet de plusieurs publications contradictoires. Au début du siècle, Stock [2] pense qu'à l'état vapeur P_4S_{10} se dissocie en P_2S_5 . Plus tard, Gardner [8] suppose que P_4S_{10} se décompose réversiblement en donnant du soufre et d'autres espèces gazeuses non identifiées. Une autre hypothèse a été formulée selon laquelle il y aurait formation de P_4S_5 [4] lors du chauffage. Sur les courbes de la figure 3, nous avons représenté les variations de la tension de vapeur saturante de P_4S_{10} en fonction de la température. Aux points C (426°, 184 torrs) et D (455°, 292 torrs) où la pression cesse d'être saturante, les masses molaires moyennes calculées du gaz sont respectivement égales à 255 et 281 g, soit très différentes de 444 g, masse molaire de P_4S_{10} . On peut donc en déduire que P_4S_{10} se dissocie dès qu'il se trouve en phase vapeur. Ce résultat est confirmé par spectrométrie Raman. Dès 450° en effet, le spectre diffère sensiblement de celui du solide ou de la solution dont seules subsistent les trois raies les plus intenses vers 190, 270 et 395 cm⁻¹. On note par contre la présence des raies caractéristi-

Fig. 3. Tensions de vapeur de P₄S₁₀. 1) 0.00107 g/cm³, 2) 0.00181 g/cm³

ques du soufre, ainsi que celle à 442 cm⁻¹, absente du spectre de la solution et attribuable soit à P_4S_3 soit à P_4S_7 . A 650°, P_4S_{10} est complètement décomposé, seuls subsistent les pics attribuables de façon certaine à P_4S_3 et au soufre gazeux.

Cette dissociation, au contraire de celle de P_4S_7 ne semble pas réversible. En effet, après traitement à 650° et refroidissement à 450°, nous ne retrouvons pas le spectre de départ mais celui d'un mélange de P_4S_7 et de soufre. En phase gazeuse, nous avons également observé que, par chauffage d'un mélange de P_4S_7 et de soufre, il n'y avait pas formation de P_4S_{10} . En conclusion, l'analyse spectrale des gaz nous permet d'écrire:

$$P_4S_{10(g)} \to P_4S_{7(g)} + \frac{3}{m}S_{m(g)}$$

Notons que cette hypothèse relative à la phase vapeur n'est pas contradictoire avec le fait qu'on puisse obtenir P_4S_{10} par chauffage d'un mélange solide de P_4S_3 et de soufre [5].

Propriétés thermodynamiques de P₄S₃

Les données thermodynamiques relatives à P_4S_3 solide, liquide et gaz sont très fragmentaires. Pour P_4S_3 solide, le point de fusion [5], l'enthalpie standard de formation [12] et la capacité calorifique [13] ont été déterminées expérimentalement. Sous forme liquide et gazeuse, à part le point d'ébullition [3], toutes les grandeurs thermodynamiques données dans le Janaf [10], ont été estimées. Le fait que P_4S_3 se vaporise sans décomposition nous a permis de déterminer un certain nombre d'entre elles. Nos résultats sont rassemblés dans le *tableau* 1.

Dans un premier temps, pour l'exploitation de nos résultats expérimentaux, nous avons dû déterminer les variations d'enthalpie molaire de P_4S_3 à l'état liquide. Nous avons utilisé en isotherme un appareil d'analyse enthalpique différentielle [14] dont le principe des mesures et de la détermination des valeurs expérimentales sont connus [15].

Propriétés thermodynamiques de P_4S_3 liquide et gazeux			
	Nos résultats	Littérature (références)	
PF Cp (liquide) cal · mole ⁻¹ K ⁻¹	47.57	173°C [1]	
$(H_{\rm T} - H_{298\cdot 15})$ liquide cal · mole ⁻¹	-14124.7 + 45.57 T		
$S^{\circ}_{298\cdot15}$ (liquide) cal · mole ⁻¹ · K ⁻¹	61.6		
P.E.	406°C	407 ± 2°C[3]	
Cp (gaz) cal · mole ⁻¹ K ⁻¹	$\begin{array}{r} 35.639 + 0.069 \cdot 10^{-3}T \\ -4.344 \cdot 10^{5}T \end{array}$		
$(H^{\circ}_{T} - H^{\circ}_{298})$ gaz cal · mole ⁻¹	$\begin{array}{r} -12083.8 + 35.639T \\ +0.0346 \cdot 10^{-3}T^2 \\ +4.344 \cdot 10^5T^{-1} \end{array}$		
$\Delta H^{\circ}_{298\cdot15}$ (vaporisation) Kcal · mole ⁻¹	20.341		
ΔH_{619} (vaporisation) Kcal · mole ⁻¹	17.709	15.200 [3]	
$S^{\circ}_{298\cdot15}(\text{gaz})$ cal \cdot mole ⁻¹ K ⁻¹	95.37	76.28 [10]	

Tableau 1 Propriétés thermodynamiques de P_4S_3 liquide et gazeux

En pratique, nous avons utilisé 0.5211 g de P_4S_3 . Le sulfure de phosphore est introduit dans une nacelle en silice. Celle-ci est scellée sous une pression réduite de 5 \cdot 10⁻² torr. Nos résultats représentés dans le *tableau* 2 peuvent être interprêtés à 2% près par les expressions suivantes:

Tableau 2

Valeurs expérimentales des variations d'enthalpie de P₄S₃ liquide

	$\begin{array}{l}H_{\Gamma}-H_{298-15}\\ \text{cal}\cdot\text{mole}^{-1}\end{array}$	
450 7 380 452 7 455 464 7 965 471 8 255 487 9 040 507 9 810 518 10 615 534 11 270 575 13 360 611 14 820		

$$(H_{\rm T} - H_{218.15})_{\rm P_sS_s\,liq.} = -14124.7 + 47.57 \ T \,{\rm cal} \cdot {\rm mole^{-1}}$$

 $C_{\rm p} = 47.57 \ {\rm cal} \cdot {\rm mole^{-1}} \cdot {\rm K}^{-1}$

A l'état gazeux, nous avons estimé la variation d'enthalpie molaire de P_4S_3 selon la méthode classique de l'oscillateur harmonique et du rotateur rigide [16]. Pour cela, nous avons dû étudier la répartition des vibrations de cette molécule de symétrie C_{3v} entre les classes de symétrie a_1 (4 vibrations) et e (5 vibrations) actives à la fois en infrarouge et en Raman. Nos conclusions différent en partie

Tableau 3

	Gerding	Gardner	Ce travail
		480	486
	442	446	446
<i>a</i> ₁	420	420	
	290		343
		187?	
	87		90
	486	480?	
			420?
	384)
е	341	339	335
		287	292
	221	218	218
	154	142	150

Symétrie des vibrations de P₄S₃ gazeux

nombres d'ondes en cm⁻¹

à la fois de celles de Gardner [8] et de celles de Gerding (17) comme le montre le tableau 3. La raie polarisée à 446 cm⁻¹ est indiscutablement de classe a_1 , celle située à 486 cm⁻¹ et dont Gardner considère la polarisation comme douteuse en phase vapeur est par contre nettement polarisée en solution dans CS₂ et appartient probablement elle aussi à la classe la plus symétrique. L'examen de nos spectres en phase vapeur nous a montré que la raie à 340 cm⁻¹ que Gardner considère comme dégénérée est en fait double et résulte de la superposition d'une raie dépolarisée de classe e à 335 cm⁻¹ et d'une raie polarisée de classe a_1 à 343 cm⁻¹. Enfin, comme nous n'observons aucun pic à 187 cm⁻¹, nous pensons comme Gerding que la dernière vibration a_1 correspond à la bande peu intense située vers 90 cm⁻¹.

En ce qui concerne les vibrations de classe e, nous sommes en accord avec Gardner pour leur faire correspondre les quatre raies dépolarisées à 335, 292, 218 et 150 cm⁻¹. Par contre, pour la cinquième, et principalement en raison des

Tableau 4

Calcul des propriétés thermodynamiques de P₄S₃ gazeux

 P_4S_3 gazeux $C_{3v} \sigma = 3$

	(486		(420
a_1	446		335
-	343	е	292
	90		218
			l150

 $I_{\rm A} = 833, 557; I_{\rm B} = 905, 593; I_{\rm C} = 905, 962 \text{ (en } 10^{40} \cdot \text{g} \cdot \text{cm}^2\text{)}$

<i>Т</i> , К	$\begin{array}{c} H^{\circ}{}_{\mathrm{T}} - H^{\circ}{}_{_{295}}\\ \mathrm{cal} \cdot \mathrm{mole}{}^{-1} \end{array}$	S°_{T} , cal·mole ⁻¹ ·K ⁻¹
298.15	0	95.37
300	57	95.56
400	3 269	104.79
500	6 616	112.25
600	10 036	118.49
700	13 499	123.83
800	16 990	128.49
900	20 499	132.62
1000	24 022	136.33
1100	27 554	139.70
1200	31 095	142.78
1300	34 640	145.62
1400	38 190	148.25
1500	41 744	150 70
1600	45 300	152.99
1700	48 859	155.15
1800	52 420	157.19
1900	55 983	159.11
2000	59 547	160.94

rapports de dépolarisation dans les spectres en solution, nous estimons que la raie à 420 cm^{-1} convient mieux que celle à 486 cm^{-1} .

Pour calculer les moments d'inertie I_A , I_B et I_C de la molécule de P_4S_3 gazeuse, nous avons admis que les longueurs et les angles des liaisons de la molécule P_4S_3 diffèrent peu sous forme solide et sous forme gazeuse [18]. Les résultats de ces calculs sont représentés dans le *tableau* 4.

La variation de l'enthalpie de P_4S_3 gazeux en fonction de la température est représentée par l'équation suivante:

$$(H^{\circ}_{T} - H^{\circ}_{298.15})P_{4}S_{3(g)} = -12083.8 + 35.639 T + 0.0346 \cdot 10^{-3} T^{2} + 4.344 \cdot 10^{5} T^{-1} \text{ cal} \cdot \text{mole}^{-1}$$

De cette relation, nous pouvons déduire la valeur de la capacité calorifique de P_4S_3 gazeux:

$$Cp_{(P_1S_{sg})} = 35.639 + 0.069 \cdot 10^{-3} T - 4.344 \cdot 10^{5} T^{-2} \text{ cal} \cdot \text{mole}^{-1} \text{K}^{-1}$$

L'entropie standard de P₄S₃ gazeux est:

$$S^{\circ}_{298.15}P_4S_{3(g)} = 95.37 \text{ cal} \cdot \text{mole}^{-1}\text{K}^{-1}$$

Nous avons évalué l'enthalpie de vaporisation de P_4S_3 à l'aide de nos mesures des tensions de vapeur saturante (figure 1, courbe S). Dans l'intervalle de température $215-377^{\circ}$, en utilisant la méthode des moindres carrés au seuil de probabilité de 0.5%, la pression de vapeur saturante suit la relation:

$$\ln P_{\rm torr} = \frac{-7905 \pm 315}{T} + (18.4 \pm 0.5)$$

A une température moyenne de 619 K, l'enthalpie de vaporisation de P₄S₃:

$$\Delta H_{619}$$
 (vaporisation) = 15709 ± 626 cal · mole⁻¹

En négligeant l'influence de la pression, nous pouvons calculer l'enthalpie standard de vaporisation de P_4S_3 à 25°:

$$\Delta H_{298,15}^{\circ} \text{ (vaporisation)} = \Delta H_{619} \text{ (vaporisation)} - \int_{298,15}^{619} \left\{ Cp_{(\mathbf{P},\mathbf{S}_{sg})} - Cp_{(\mathbf{P},\mathbf{S}_{s1})} \right\} \mathrm{d}T$$

soit ΔH_{298}° (vaporisation) = 20.341 kcal · mole⁻¹.

Ces différentes grandeurs thermodynamiques concernant P_4S_3 gazeux nous ont permis de déterminer l'entropie standard de formation de P_4S_3 liquide. En effet, l'enthalpie libre standard de vaporisation de P_4S_3 peut être exprimée par les deux relations suivantes:

 $\Delta G_{\rm T}^{\circ} = -RT \ln p$, où p est la pression de vapeur saturante de et P₄S₃ exprimée en atmosphères.

$$\Delta G_{\rm T}^{\circ} = \Delta H_{298}^{\circ} \text{ (vaporisation)} + \int_{298}^{\rm T} \Delta C p \mathrm{d}T - T \Delta S_{298,15}^{\circ} - T \int_{298}^{\rm T} \frac{\Delta C p}{T} \mathrm{d}T$$

J. Thermal Anal. 12, 1977

380

où

$$\Delta Cp = Cp_{\mathbf{P},\mathbf{S}_{3}(\mathbf{g})} - Cp_{\mathbf{P},\mathbf{S}_{3}(\mathbf{1})}$$

et

 $\Delta S_{298}^{\circ} = S_{298}^{\circ} P_4 S_3(g) - S_{298}^{\circ} P_4 S_3(1)$

A l'aide de nos valeurs expérimentales, nous connaissons p en fonction de la température. Pour chaque couple de valeurs pression-température, nous avons calculé l'entropie standard de formation de P_4S_3 liquide. Ces calculs donnent:

$$S_{298}^{\circ}P_4S_3(l) = 61.6 \text{ cal} \cdot \text{mole}^{-1}\text{K}^{-1}$$

avec un écart maximum de ± 0.5 .

Il est à remarquer qu'en égalant les deux expressions de ΔG_{T}° et en prenant la pression de vapeur saturante égale à une atmosphère, la température correspondante est la température d'ébullition de P₄S₃. Nous trouvons 406°, valeur très proche de la valeur expérimentale 407 ± 2°C [3].

Conclusion

Nous avons étudié la dissociation thermique des sulfures de phosphore P_4S_3 , P_4S_7 et P_4S_{10} . Les composés P_4S_7 et P_4S_{10} se dissocient toujours en phase gazeuse. P_4S_7 de façon réversible avec formation de P_4S_3 et du soufre, P_4S_7 de façon irréversible en donnant P_4S_7 et du soufre. Seul le sulfure P_4S_3 se vaporise sans décomposition en vapeur saturante. En vapeur non saturante, une dissociation partielle et réversible a lieu au-dessus de 700°. Nous n'avons pas pu identifier de façon certaine tous les produits de décomposition, seul le soufre et le phosphore ont été mis en évidence par spectrométrie Raman à haute température.

Nous avons également déterminé quelques grandeurs thermodynamiques de P_4S_3 liquide et gazeux. Nous avons mesuré expérimentalement la capacité calorifique de P_4S_3 liquide, ainsi que son entropie standard de formation. Nous avons calculé la capacité calorifique et l'entropie standard de P_4S_3 gazeux et estimé l'enthalpie standard de vaporisation de P_4S_3 à l'aide de nos mesures des tensions de vapeur saturante.

Nous remercions Monsieur Letoffe du laboratoire du Professeur J. Bousquet, INSA de Lyon, 20 Avenue Albert Einstein 401, 69621 Villeurbanne, qui a réalisé pour nous les déterminations expérimentales des capacités calorifiques de P_4S_3 liquide.

Bibliographie

- 1. H. VINCENT, Bull. Soc. Chim., 12 (1972) 4517.
- 2. A. STOCK et H. VON BEZOLD, Chem. Ber., 41 (1908) 657.
- 3. R. FORTHMANN et A. SCHNEIDER, Z. Physik. Chem., 49 (1966) 22.
- 4. E. A. KUKUSHKINA, G. P. DUDCHIK, O. G. POLYACHENOK et G. T. NOVIKOV, Zh. Fiz. Khim., 48 (1974) 1885.
- 5. H. VINCENT, Sulfures de phosphore, Thèse, Lyon, (1971).

- 6. J. BOUIX et R. HILLEL, 5ème Symposium International sur le bore et les borures, Bordeaux, Septembre, 1975.
- 7. R. HILLEL et J. BOUIX, Bull. Soc. Chim., 11-12 (1975) 2458.
- 8. M. GARDNER, J. Chem. Soc. Dalton, (1973) 691.
- 9. G. A. OZIN, J. Chem. Soc., 22 D (1969) 1325.
- 10. JANAF, Thermochemical tables, P. B. 168370, Clearinghouse, Springfield (1965).
- 11. J. DROWART, P. GOLDFINGER, D. DETRY, H. RICKERT et H. KELLER, Advan. Mass Spectrometry, 4 (1967) 506.
- 12. J. CUEILLERON et H. VINCENT, Bull. Soc. Chim., 6 (1970) 2118.
- 13. H. L. CLEVER, E. F. WESTRUM et A. W. CORDES, J. Phys. Chem., 69 (1965) 1214.
- 14. J. BOUSQUET et P. VERMANDE, Bull. Soc. Chim., 5 (1966) 1552.
- 15. A. GUILLON, Thèse Lyon (1967).
- 16. G. HERTZBERG, Molecular spectra and molecular structure, Van Nostrand, Co. Inc., (1959).
- 17. H. GERDING, J. W. MAARSEN et P. C. NOBEL, Rec. Trav. Chim., 76 (1957) 757.
- 18. A. H. COWLEY, J. Chem. Educ., 41 (1964) 530.

RÉSUMÉ – Nous avons montré par spectrométrie Raman à chaud et mesure des tensions de vapeur que P_4S_3 se vaporise de façon congruente tandis que P_4S_7 et P_4S_{10} se dissocient dès le début de leur vaporisation. P_4S_7 donne réversiblement P_4S_3 et soufre. P_4S_{10} se dissocie irréversiblement en P_4S_7 et soufre. A l'état de vapeur non saturante, P_4S_3 se dissocie au-dessus de 600° avec formation de phosphore, de soufre et d'autres espèces non identifiées.

Nous avons mesuré expérimentalement la capacité calorifique de P_4S_3 liquide, calculé celle de P_4S_3 gazeux et son entropie standard. Nous avons aussi estimé l'enthalpie standard de vaporisation de P_4S_3 à l'aide des mesures des tensions de vapeur saturante. Nous en avons déduit l'entropie standard de P_4S_3 liquide et son point d'ébullition.

ZUSAMMENFASSUNG – Mittels Raman-Spektrometrie bei erhöhter Temperatur und durch Messung der Dampfdrucke wurde festgestellt, daß sich P_4S_3 verflüchtigt, während P_4S_7 und P_4S_{10} mit Beginn der Verflüchtigung dissoziieren. P_4S_7 ergibt reversibel P_4S_3 und Schwefel. Im Zustand ungesättigten Dampfes dissoziiert P_4S_3 oberhalb von 600° unter Bildung von Phosphor, Schwefel und anderer nicht identifizierter Substanzen.

Die Wärmekapazität von flüssigem P_4S_3 wurde gemessen, während die vom gasförmigem P_4S_3 sowie seine Standard-Entropie berechnet wurden. Die Standard-Enthalpie der Verflüchtigung des P_4S_3 wurde durch Messungen der Sättigungs-Dampfdrucke ermittelt. Daraus wurden die Standard-Entropie des flüssigen P_4S_3 sowie sein Siedepunkt berechnet.

Резюме — С помощью высоко-температурной Раман спектроскопии и газо-тензиметрическими измерениями показано, что испарение P_4S_3 является конгруэнтным, в то время как P_4S_7 и P_4S_{10} диссоциируют в начале испарения. P_4S_7 диссоциирует обратимо на P_4S_3 и серу, в то время как диссоциация P_4S_{10} на P_4S_7 и серу является необратимой. Выше 600° в атмосфере ненасыщенного пара P_4S_3 диссоциирует на серу, фосфор и другие не идентифицированные газообразные частицы. Была измерена теплоемкость жидкого P_4S_3 , а для газообразного P_4S_3 была вычислена и его стандартная энтропия. Из экспериментальных результатов по давлению насыщенных паров была оценена стандартная энтропия испарения P_4S_3 и его точка кипения.

382